Class 11th | Chemistry

Unit:1

Some Basic Concepts of Chemistry

Lecture - 1

Textbook for Class XI

Chemistry

NEST

3 Chapters

MISS EXCEPTIO KAISE PDHANE VII 2025-26

Toh Shuru krein PPP

7 Marks

Favourite

Science is the study of the natural and physical world through observation, experimentation, and analysis. It's a systematic way of building knowledge about the world around us. knowledge.

Latin word - Scientia

DEFINITION OF CHEMISTRY

Chemistry is the science of molecules & their transformations. It is the science not so much of the hundred elements but of the infinite variety of molecules that may be built from them. ~ Roald Hoffmann

Importance of Chemistry

Chemistry in Medicines

Chemistry in Industry

Chemistry in Agriculture

NATURE OF MATTER

Matter is defined as anything which occupies space and has mass, e.g., wood, book, water, air, petrol, plastics, iron etc. are all composed of matter.

INTERCONVERTION OF STATES OF MATTER

CLASSIFICATION OF MATTER

1/ Physical classification

- In physical classification, matter is classified as solid, liquid & gas., Plasma, BEC
- The three states of matter are interconvertable. It may be done by changing the temperature and pressure.

2. Chemical classification

- In chemical classification, matter is classified as pure substances and mixtures. Materials found in nature are either single substances or consists of two or more substances.
- A sample containing only one substance is called pure substance. Samples containing more than one substance are not pure. They are called mixtures.

CHEMICAL.

MATTER

Mixtures

Homogeneous mixtures

Heterogeneous mixtures

Pure Substances

Elements

Compounds

CLASSIFICATION OF PURE SUBSTANCES

1. Elements:

- An element is defined as a pure substance which contains only one kind of atoms.
- An element can neither be broken into simpler substances nor build from simpler substances by any method.

CLASSIFICATION OF PURE SUBSTANCES

2. Compounds:

- When two or more atoms of different elements combine, the molecule of a compound is formed.
- · Compounds are pure substances and contain more than one kind of element.
- These elements have a fixed proportion by mass in the compound.

Types of Compounds

Organic Compounds
Such as C₂H₆, C₂H₄, C₂H₂, C₆H₆ etc.

Inorganic Compounds Such as NH₂, CO₂, HCl. etc

MIXTURES

- Mixtures are not pure substances. A
 mixture may contain two or more
 substances (elements or compounds)
 in any proportion.
- The mixture shows the properties of its constituents. A mixture may be
- Separated into its constituents by physical methods.

Types of Mixtures

1. Homogeneous Mixtures
These are the mixtures which
have uniform composition
throughout.

2. Heterogeneous Mixture

These are the mixtures which do
not have uniform composition
throughout.

PROPERTIES OF MATTER

Physical properties can be measured or observed without changing the identity or the composition of the substance.

For example- density, volume, melting point & boiling point

The measurement or observation of chemical properties requires a chemical change to occur.

For example- flammability, solubility, heat from combustion, radioactivity, types of chemical bonds formed & acidity or basicity.

DENSITY

MEASUREMENT OF PHYSICAL PROPERTIES

The International System of Units
SI system is a modification of metric
system and has seven base units
pertaining to the seven fundamental
scientific quantities.

Property	Unit	Abbreviation	
Length	meter		
Mass	kilogram	kg	
Time	seconds	5	
Amount	mole	mol	
Temperature	kelvin	K	
electric current	ampere	A	
luminous intensity	candella	cd	

FUNDAMENTAL & DERIVED UNITS

Fundamental units are independent units of measurement, while derived units are combinations of these fundamental units.

S.no	Physical quantity	Expression	Unit m²	
1	Area	lenath x breadth		
2	Volume	area x height	m ³	
3	density	mass / volume	Kgm ⁻³	
4	Velocity	displacement / time	ms ⁻¹	
5	Momentum	mass / velocity	Kgms ⁻¹	
6	Acceleration	velocity /time	ms ⁻²	
7	Force	mass/acceleration	kgms ⁻² or N	
8	Pressure	force/area	Nm ⁻² or Pa	
9	Energy/(work)	force x distance	Nm or J	
10	Surface Tension	force/length	Nm ⁻¹	

PREFIX IN SI UNITS

FACTORS	PREFIX	SYMBOL	DECIMAL
1024	yotta	Y	1000 000 000 000 000 000 000
10 ²¹	zetta	Z	1000 000 000 000 000 000
10 ¹⁸	еха		1000 000 000 000 000
1015	peta	P.	1000 000 000 000
1012	tera	T	1000 000 000
₹ 10°	giga	G	1000 000 000
** 10°	mega	M	1000 000
米 10³	kilo	k	1000
10 ²	hecto	h	100
** 10 1	deca	da	10

PREFIX IN SI UNITS

FACTORS	PREFIX	SYMBOL	DECIMAL
₩ 10 ⁻¹	deci	d	0.1
* 10 ⁻²	centi	C	0.01
¥ 10⁻³	milli-	m	0.001
≭ 10 ⁻⁶	micro	Р	0.000 001
* 10°	nano	n	0.000 000 001
10 ⁻¹²	pico	P -	0.000 000 000 001
10 ⁻¹⁵	femto	f	0.000 000 000 001
10 ⁻¹⁸	atto	a	0.000 000 000 000 001
10 ⁻²¹	zepto	z	0.000 000 000 000 000 001
10 ⁻²⁴	yocto	у	0.000 000 000 000 000 000 001

MEASUREMENT - MASS & WEIGHT

Mass of a substance is the amount of matter present in it, while weight is the force exerted by gravity on an object.

3 Same

MEASUREMENT - VOLUME

Volume is the amount of space that a substance occupies.

Volume of a liquid or solution can measured by graduated cylinder, burette, pipette etc.

MEASUREMENT - DENSITY

Density of the substance is its amount of mass per unit volume

MEASUREMENT - TEMPERATURE

Measure of degree of hottness & coldness

Celcius

Fahrenheit
$$\frac{9}{5}$$
 (°C) + 32

MEASUREMENT - TEMPERATURE

$$F = \frac{9(%) + 32}{5} + 32$$

$$= \frac{9(%) + 32}{5} + 32$$

$$K = {}^{\circ}C + 273$$

$$= 25 + 273$$

$$= 298K$$

UNCERTAINITY IN MEASUREMENT

105

107.

1,09

CERTAIN DIGIT - 1

UNCERTAIN DIGIT - 5,7,9

UNCERTAINITY IN MEASUREMENT

Accuracy- Accuracy describes the closeness of a single measurement to its true value. 10 -> Accurac

TRUE VALUE K AAS PAS VALUE ANA

Precision - Precision describes how closely the different measurements 4 of a given quantity agree with one another.

APAS MEIN SAME VALUE ANA

True values

PRECISION & ACCURACY

Lets assume true value of some output is 3)

Student	Round1 output	Round1 output	Mean	Is Precise	Is Accurate
Hema	2.80	3	2.90	Nox	No X
Rekha	2.9	2.90	2.905	Yes./	No X
Jaya	3.01	2.99	3	Yes	Yes
Sushma	2.90	3.10	3	No X	Yes

SCIENTIFIC NOTATIONS

Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form, since to do so would require writing out an inconveniently long string of digits.

decimal moves left - power increase decimal moves right - power decreases

SCIENTIFIC NOTATIONS

10 Units to the Left!

Moving to the Left = Positive Exponent

2.76 x 10¹⁰

5 Units to the Right!

Moving to the Right = Negative Exponent

24600000000

NX107 7.3 X 105

SIGNIFICANT FIGURES

<u>Definition:</u> The significant figure in a number is the sum of certain digits and one uncertain (doubtful) digit.

More Significant figures, more will be the accuracy of answers.

RULES TO DETERMINE SIGNIFICANT FIGURES

1. All non-zero digits are significant.

2. All the zeros between two non-zeros digits are significant figures.

RULES TO DETERMINE SIGNIFICANT FIGURES

3. Ending zeros in the right of the decimal are significant figures.

4. Initial zeros are insignificant figures.

RULES TO DETERMINE SIGNIFICANT FIGURES

5. Exact number have infinite number of significant figures.

ROUNDING OFF THE UNCERTAIN DIGITS

- If the most right digit is > 5) the preceding number is increased by one.
- If the most right digit is < 5, the preceding number is retained.
- If the most right digit is 5) then the preceding number is not changed if it is an even number but it is increased by one if it is an odd number.

Rounding off upto 2 significant figure

KUCH QUESTIONS HO JAYEIN ???

Solve kr toh loge na tum

Calculate the number of significant figures

7.683
$$\rightarrow$$
 4

5.30×10° \rightarrow 3

6.9543 \rightarrow 5

10.669 \rightarrow 5

$$0.030 \rightarrow 2$$

3 chairs $\rightarrow \infty$
 $90000 \rightarrow 1$
 $3.800 \rightarrow 4$

HOMEWORK - COMMENT

- 1 Round off 0.0457 to 2 significant figures
- 2 Write 12500000000 in scientific notation

NEXT CLASS?

App (Next top pers) NOTES ?? ABb -IEST ???

KHATAM!

TATA!!

BYE-BYE!!!

Fig Mileinge...

